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Abstract:  A quantitative structure–activity relationship (QSAR) was performed to analyze inhibitory activities of 42 

Benzofuran/Benzothiophene Biphenyls derivatives using multiple linear regressions (MLR). A suitable set of 

molecular descriptors were calculated to represent the molecular structures of compounds, such as constitutional, 

topological, geometrical, electrostatic and quantum-chemical descriptors. The important descriptors were selected 

with the aid of the genetic function algorithm (GFA) method. The root mean square errors (RMSE) of the training 

set, and the test set for genetic algorithm- multiple linear regression (GA–MLR) model were calculated to be 

0.1072 and 0.3880, the square of correlation coefficients (R2) were obtained as 0.952 and 0.942, respectively and 

Molecular docking study showed that,Benzofuran/Benzothiophene Biphenyls derivatives leads to stronger 

interaction with PTP1B when compared to the diabetic drug Glibenclamide due to low binding energy ( -7.7, -

8.1,and -7.9 compared to -7.5). Results showed that the predictive ability of the model was satisfactory, and it can 

be used for designing similar group of PTP1B enzyme inhibitors. 

Keywords:  QSAR, GFA, protein tyrosine phosphates 1B (PTP1B) 

 

 

Introduction 

Protein tyrosine phosphatases (PTPs) constitute a large family 

of enzymes that are crucial modulators of tyrosine 

phosphorylation-dependent cellular events, such as growth, 

proliferation and differentiation, metabolism, immune 

response, cell-cell adhesion, and cell-matrix contacts (Fischer 

et al., 1991; Tonks, 2006). The deregulation of PTP activity 

contributes to the pathogenesis of several human diseases, 

including cancer, diabetes, and immune disorders (Tonks, 

2006). Protein-tyrosine phosphatase 1B (PTP1B), a member 

of the PTP superfamily, has emerged as the best-validated 

drug target for therapeutic development (Zhang and Lee, 

2003). PTP1B is localized to the cytoplasmic face of the 

endoplasmic reticulum and is expressed ubiquitously, 

including in classically insulin-targeted tissues, such as liver, 

muscle, and fat (Tonks, 2003). PTP1B plays an important role 

in down-regulating insulin signaling cascades via tyrosine 

dephosphorylation of the insulin receptor, which renders it 

inactive, or dephosphorylation of insulin receptor substrates 1 

and 2, which inhibits their interactions with downstream 

signaling molecules. PTP1B also negatively regulates the 

leptin signaling pathway by dephosphorylating Janus kinase 2 

(JAK2), a phosphorylated tyrosine kinase, in the 

hypothalamus. This decreases food intake and increases 

energy expenditure (Asante-Appiah and Kennedy, 2003; 

Zabolotnyet al., 2002; Benceet al., 2006; Koren and Fantus, 

2007). 

World Health Organization (WHO) reported that, the number 

of adults with diabetes has quadrupled in the past 25 years, 

from 108 million in 1980 to 422 million in 2014. This adds up 

to a global prevalence of 8.5% in 2014 vs. 4.7% in 1980. 90-

95% of these individual have type II diabetes (WHO, 2016). 

Type II diabetes is a progressive disease characterized by 

insulin resistance in peripheral tissues and/or impaired insulin 

secretion by the pancreas. The resultant high blood glucose 

level generally leads to several serious complications. At the 

molecular level, the mechanism of insulin resistance in type II 

diabetes appears to involve defects in post-receptor signal 

transduction (Montalibet and Kennedy, 2005; Youngren and 

Goldfine, 1997). Increased incidence of type II diabetes 

mellitus and obesity has elevated the medical need for new 

agents to treat these disease states. Resistance to the hormones 

insulin and leptin are hallmarks of both type II diabetes and 

obesity. Drugs that can ameliorate this resistance should be 

effective in treating type II diabetes and possibly obesity. 

Protein tyrosine phosphatase 1B (PTP1B) is thought to 

function as a negative regulator of insulin and leptin signal 

transduction. 

Quantitative structure–activity relationship (QSAR) approach 

is very useful for the prediction of biological activities, 

especially in drug design. This approach is based on the 

assumption that variations in the properties of the compounds 

can be correlated with changes in their molecular 

characteristics (Kamlendraet al., 2015). Molecular docking is 

used to study how a ligand interacts with its biological target 

and to confirm the conclusions of QSAR studies. Therefore, 

the QSAR and docking techniques are valuable molecular 

modelling tools for drug design (Sharma et al., 2014; 

Bhadoriyaet al., 2013; Bhadoriyaet al., 2012; Jain et al., 

2012). 

This study was performed to analyze the inhibitory effects of 

certain experimentally known compounds on human 

recombinant PTP1B enzyme, their interaction details and 

effectiveness. In this study we have used human recombinant 

PTP1B enzyme 3D structure as receptor against a dataset of 

Benzofuran/Benzothiophene Biphenyls derivatives. Binding 

site of human recombinant PTP1B enzyme was identified and 

insilico analysis was carried out via performing docking 

studies of human recombinant PTP1B enzyme structures with 

Benzofuran/Benzothiophene Biphenyls derivatives and 

diabetic drug Glibenclamide and to compare the results. 

 

Material and Methods 

Data collection and splitting 
In this study, a Data set of 42 molecules was collected from 

published literature (Vats et al., 2005). The chemical 

structures and the biological response (IC50) of these 42 

molecules are presented in Fig. 1 and Table 1. The IC50 values 

were converted into its logarithmic scale pIC50 = -log (IC50), 

to reduce the skewness of the data set, which was then used 

for successive QSAR analysis as the response variable. The 

entire set of compounds was divided into two subsets: training 

set (70%) consisting of 29 molecules were used to build the 

actual models, and test set (30%)  consisting of 13 molecules 

not found in the training set, which was used to validate the 

models once they were built. 
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Software and hardware 

The following software packages were utilized in this 

research: ChemDraw Ultra 12.0, Cambridge Soft Corp. 

(www.cambridgesoft.Corn), USA;Materials Studio (Version 

8), Accelrys Inc. (www.accelrys.-com), USA;Spartan’14 

(version1.1.2), California, USA, PaDEL 

Descriptor(Yap,2011)(http://www.yapcwsoft.com/dd/padeldes

criptor/), Accelerys Discovery Studio Visualiser 2016 Client 

Ligplus and AutoDock 4.2. (Anithaet al., 2013) with MGL 

tools  (http://mgltools.scripps.edu/downloads)installed on a 

Dell personal computer (PC) equipped with 8GBRAM 

capacity,  processor intel CORE TMi5, hard disc capacity of 

1000GB and CPU@ 2.20GHz2.20GHz  running on 64-bit 

Operating System. 

Molecular descriptor calculation 

All of the molecules were drawn using ChemDrawsoftware 

and were imported into Spartan’14 to create the three 

dimensional (3D) structure and was pre-optimized using the 

MM+ molecular mechanics force field. Then a more precise 

optimization were performed with the density functional 

theory (DFT) level using Becke's three-parameter Lee-Yang-

Parr hybrid functional (B3LYP) in combination with the 6-

311G*  basis set (Malamaset al., 2000; Becke, 1993). 

Descriptors were calculated using the Spartan’14 andPaDEL 

Descriptor software package version 2.18 (Lee et al., 1988) 

which include: constitutional, topological, geometrical, 

electrostatic, charged partial surface area, quantum-chemical, 

molecular orbital and thermodynamic descriptors.  

Statistical analysis 

The correlation analysis was performed by the statistical and 

modeling software Material Studio where the PIC50 was used 

as dependent variable and the computed descriptors as 

independent variable. The descriptors with higher correlation 

to pIC50 and lower inter-correlation were selected to carry out 

the GFA regression analysis to establish the optimal QSAR 

equations. The statistical significance of the generated models 

were assessed based on Friedman’s Lack of Fit (LOF) score 

(Ravinchandranet al., 2011) Table 3 show the summary of the 

generated models and model 1 was selected as best model 

based on the lowest LOF score. 

Model validation 

The performance of external validation was characterized by 

the determination coefficient (R2), root mean standard error 

(RMSE) and external explained variance (𝑅𝑒𝑥𝑡
2 ), which are 

defined as follows (Schüürmannet al., 2008): 

𝑅2 = 1 −
∑(𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑)

2

∑(𝑌𝑜𝑏𝑠 − �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
2                     1 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑜𝑏𝑠 − 𝑌𝑝𝑟𝑒𝑑)

2𝑛
𝑖=1

𝑛
                   2 

 

𝑅𝑒𝑥𝑡
2 = 1 −

∑(𝑌𝑜𝑏𝑠(𝑇𝑒𝑠𝑡) − 𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡))
2

∑(𝑌𝑜𝑏𝑠(𝑇𝑒𝑠𝑡) − �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
2        3 

 

Where𝑌𝑜𝑏𝑠;  𝑌𝑝𝑟𝑒𝑑; �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 are observed activity values, 

predicted activity values and the mean observed activity 

values of the samples in the training set, respectively. n is the 

total number of samples in the training set, 𝑌𝑜𝑏𝑠(𝑇𝑒𝑠𝑡), 

𝑌𝑝𝑟𝑒𝑑(𝑇𝑒𝑠𝑡), �̅�𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔are observed activity values, predicted 

activity values and the mean observed activity values of the 

samples in the test set, respectively. 

Docking studies 

Ligand structure preparation 

Ligand 2D structures were drawn using ChemDraw Ultra 7.0 

(ChemOffice 2002). Chem3D Ultra 7.0 was used to convert 

2D structure into 3D and the energy minimized using semi 

empirical AM1 method. Minimize energy to minimum RMS 

gradient of 0.100 was set in each iteration. All the ligand 

structures were then saved in PDBQT file format, for input 

into AutoDock version 4.2 (Ruth and Garrett, 2006). 

Protein structure preparation 

For the molecular docking study, protein structure was 

obtained from the Brookhaven protein data bank; the DPPIV 

structure PDB ID was 3zv2. The co crystallized ligand (PF2) 

in the DPP-IV structure was removed. The macromolecule 

was checked for polar hydrogens, partial atomic Kollman 

charges were assigned, and then atomic solvation parameters 

were allotted. Torsion bonds of the inhibitors were selected 

and defined. Secondly, the three dimensional grid box was 

created by Auto Grid algorithm to evaluate the binding 

energies on the macromolecule coordinates. The grid maps 

representing the intact ligand in the actual docking target site 

were calculated with Auto Grid. The structures were then 

saved in PDBQT file format, for input into AutoDock version 

4.2. The results of the Autodock tools were viewed in the 

Accelerys Discovery Studio Visualiser 2016 Client and 

Ligplus (Ruth and Garrett, 2006). 

 

 

 

 
 

Fig. 1: Parent structure of the Benzofuran/Benzothiophene 

Biphenyls derivatives 

 

 

 

 

 

 

 

 

A: Compound 1-

11 

B: Compound 12-34 

C: Compound 35-42 
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Table 1: The Benzofuran/Benzothiophene Biphenyls derivatives with their activities 
Cpd No R1 R2 X pIC50 

1b butyl H O 0.130 

2a benzyl H O 0.0362 

3a benzoyl H O 0.130 
4a butyl H S 0.154 

5a 4-OH benzyl H S -0.033 

6a benzyl CH2Ph-4-COOH O 0.443 
7a 2,4-di-OH-benzyl H S 0.236 

8b butyl CH2COOH O -0.340 

9a butyl CH(CH2Ph)COOH O 0.356 
10a benzyl CH(CH2Ph)COOH O 0.568 

11a 2,4-di-OH-benzyl CH(CH2Ph)COOH S 1.070 

Cpd No R1 R2 R3 X pIC50 

12a Br H H S -0.029 

13b Br Br H S 0.346 

14a I I H S 0.283 
15a Br H CH2COOH S 0.443 

16a Br Br CH2COOH S 1.000 

17a 4-OCH3-Ph H CH2COOH S 1.096 
18a 4-OC2H5-Ph H CH2COOH S 1.283 

19a 2,3-di-OCH3-Ph H CH2COOH S 1.148 

20a 3,4,5-tri-OCH3-Ph H CH2COOH S 1.000 
21b 4-OCH3-Ph Br CH2COOH S 1.537 

22b 2,4-di-OCH3-Ph Br CH2COOH S 1.327 

23a 3-OCH3-Ph 3-OMe-Ph CH2COOH S 1.602 
24b 4-OCH3-Ph 4-OMe-Ph CH2COOH S 1.602 

25a Br H CH2CH2CH2COOH S 0.769 

26a Br Br CH[CH2)5CH3]COOH O 1.638 
27b Cyclopentyl H CH2COOH O 0.769 

28a NHCH2CH2COOH H CH2CH2Ph O 0.853 

29b NHCOCH2CH2COOH H H O 0.036 
30a NHCOCH=CHCOOH H H O 0.337 

31a Ph H CH2COOH S 1.00 

32b 3-OCH3-Ph Br CH2COOH S 1.552 
33a Br Br CH[(CH2)3CH3]COOH O 1.283 

34a NHCH2COOH H CH2CH2Ph O 1.086 

Cpd No R1 R2 X pIC50 

35a H H CH(OH) -0.041 
36a H Br CH(OH) 0.318 

37a H Br CH2 0.481 

38b H I CH2 0.420 

39b CH2COOH Br CH2 -0.146 

40b CH(CH2Ph)COOH Br CH2 0.431 

41b CH(CH2Ph)COOH Br CO -0.079 
42a CH(CH2Ph)COOH I CH2 0.494 

aTraining set;         bTest set 

 
 

Results and Discussion 
A QSAR analysis was performed to explore the structure – 

activity relationship of different 42 

benzofuran/benzothiophene derivatives acting as PTP1B 

inhibitors. Five QSAR models were built using GFA 

algorithm, but only the best model (Model 1) was selected and 

reported due to small value of Friedman’s Lack of fit (LOF), 

high value of R2. The Description of the descriptors used in 

the QSAR optimization model are shown in Table 2. Table 3 

show the Summary of generated GFA equations and Fig. 2 is 

the graph of calculated pIC50 against the experimental values 

for the training and test sets.  The R2 value of the QSAR 

model was 0.9522, indicating a high goodness-of-fit of the 

model. 𝑄𝐿𝑂𝑂
2  of the QSAR was as high as 0.9151, implying 

good robustness of the model. The differences between R2 and 

𝑄𝐿𝑂𝑂
2  (0.0371) did not exceed 0.3, indicating no over-fitting in 

the model (Golbraikh and Tropsha, 2002). As shown in Fig. 2, 

the predicted pIC50 values were consistent with the observed 

values for both the validation and training sets. The model 

revealedacceptable predictability with 𝑅𝑝𝑟𝑒𝑑
2 = 0.672, RMSE= 

0.1072. In summary, the developed QSAR model showed 

satisfactory performance. 

 

 
Fig. 2:The calculated pIC50 against the experimental values 

for the training and test sets 

 

Molecular docking studies were carried out against human 

recombinant PTP1B enzyme (target). All the compounds were 

found to strongly inhibit by completely occupying the active 

sites of the target protein. The docking of diabetic drug 

Glibenclamide and compound 10, 21 and 34 into active site of 

PTP1B (Figs. 3, 4, 5, and 6) was carried out using 
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Autodocktool 4.2 and ligplus. The final docking score in 

Kcal/mol for each docking experiment was calculated and 

represented in Table 4 alongside with Binding residue, 

Hydrogen bond and its distance (A˚) and all inhibitors showed 

low energy values as indicated in Table 4. 

From docking of diabetic drug Glibenclamide (Fig. 3) into 

active site of PTP1B, we observed four  Hydrogen bonds with 

protein amino acid residues that are Arg45, Tyr46, Asn44 and 

compound 10 (Fig. 4) with four H - bond with the protein 

amino acid residues that are Arg112, Thr177, Gln127 and 

compound 21 (Fig. 5) with four H - bond with the protein 

amino acid residues that are Arg112, Trp179, Thr177 and 

compound 34 (Fig. 6) with four H - bond with the protein 

amino acid residues that are Arg221, Ile219, Gln266, Gly183. 

 

 

 
Fig. 3: Docking views of Glibenclamide (ligand) in the 

binding site of Protein Tyrosine Phosphates 1B (PTP1B). (A) 

Green dotted line shows H-bonds between Glibenclamide and 

basic groups. Carbon is colored in grey, oxygen red and 

nitrogen blue 

 

 
Fig. 4: Docking views of compound 10 in the binding site of 

Protein Tyrosine Phosphates 1B (PTP1B). (A) Green dotted 

line shows H-bonds between compound 10 and basic groups. 

Carbon is colored in grey, oxygen red and nitrogen blue 

 
Fig. 5: Docking views of compound 21 in the binding site of Protein 
Tyrosine Phosphates 1B (PTP1B). (A) Green dotted line shows H-

bonds between compound 21 and basic groups. Carbon is colored in 
grey, oxygen red and nitrogen blue 

 

 

 
Fig. 6: Docking views of compound 34 in the binding site of Protein 

Tyrosine Phosphates 1B (PTP1B). (A) Green dotted line shows H-
bonds between compound 34 and basic groups. Carbon is colored in 

grey, oxygen red and nitrogen blue. 

 

Strong inhibitor binding is reflected by the frequency of 

hydrogen bonds as shown in Table 4 and Figs. 3 – 6. These 

Compounds each made four hydrogen bonds with target 

residues. It was observed that, Arg was the most frequently 

occurring residue in hydrogen bonding. The details of 

hydrogen bonds formed by the compounds with binding 

residues, atoms involved in the bonds and distance are given 

in Table 4. 

 

Model 1 

PIC50= -14.750 +0.00047 ATSC6v +0.6933 VE1_Dzs 

+3.51507SpMax2_Bhv +0.04512 RDF30u +0.05 RDF45m 

N=29, LOF = 0.0652, R2 = 0.9522, 𝑅𝑎𝑑𝑗
2 = 0.9418, 

𝑄𝐿𝑂𝑂
2 =0.9151, RMSE = 0.1072, 𝑅𝑝𝑟𝑒𝑑

2 = 0.672 

 

 

Table 2: Description of the descriptors 
Descriptor Class Descriptor Description Class 

Autocorrelation Descriptor ATSC6v Centered Broto-Moreau autocorrelation - lag 6 / weighted by van der Waals volumes 2D 

Barysz Matrix Descriptor VE1_Dzs Coefficient sum of the last eigenvector from Barysz matrix / weighted by I-state 2D 

Burden Modified 
Eigenvalues Descriptor 

SpMax2_Bhv Largest absolute eigenvalue of Burden modified matrix - n 2 / weighted by relative 
van der Waals volumes 

2D 

RDF Descriptor RDF30u Radial distribution function - 030 / unweighted 3D 

RDF Descriptor RDF45m Radial distribution function - 045 / weighted by relative mass 3D 
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Table 3:  Summary of generated GFA equations  

 Equation 1 Equation 2 Equation 3 Equation 4 Equation 5 

Friedman LOF 0.065197 0.066082 0.068838 0.07316 0.074364 

R-squared 0.952183 0.951534 0.949513 0.946343 0.94546 

Adjusted R-squared 0.941788 0.940998 0.938537 0.934678 0.933603 

Cross validated R-squared 0.91512 0.91929 0.906545 0.911388 0.918112 

Significant Regression Yes Yes Yes Yes Yes 

Significance-of-regression F-value 91.60047 90.31209 86.51206 81.12958 79.74166 

Critical SOR F-value (95%) 2.663088 2.663088 2.663088 2.663088 2.663088 

Replicate points 0 0 0 0 0 

Computed experimental error 0 0 0 0 0 

Lack-of-fit points 23 23 23 23 23 

Min expt. error for non-significant 

LOF (95%) 

0.097212 0.097869 0.099889 0.102977 0.103821 

 

 

Table 4: Atoms of the compounds and target protein residues involved in making hydrogen bonds and bond distance 

Compound 
Binding Affinity 

(Kcal/mol) 
Binding residue Hydrogen bond Distance (A˚) 

Glibenclamide -7.5 Arg45 O–HN 3.08 

  Tyr46 O–HN 2.97 
  Asn44 NH–O 3.15 

   NH–O 2.99 
10 -7.7 Arg112 O–HN 3.08 

  Thr177 NH–O 3.01 

   O–O 2.91 
  Gln127 O–HN 3.05 

21 -8.1 Arg112 O–HN 3.15 

   O–HN 3.02 
  Trp179 O–O 2.70 

  Thr177 NH–O 2.86 

34 -7.9 Arg221 O–HN 2.92 
  Ile219 O–O 2.78 

  Gln266 O–HN 2.82 

  Gly183 O–HN 3.08 

 

 

Conclusion 

In conclusion, QSAR analysis on a series of 

benzofuran/benzothiphene biphenyls with PTP1B inhibitory 

activity expressed as pIC50 (μM) against human recombinant 

PTP1B enzyme was performed using robust statistical 

technique GFA, coupled with the use of combination of 

different classes of descriptors. The generated equations were 

analyzed for their statistical significance and predictive ability 

by using test set of 13 molecules that were not used in model 

generation. GFA handled the physico-chemical descriptors 

effectively in the generation of QSAR models with significant 

statistical terms including external predictivity. Equation 1 

was selected as representative equation to explain the variance 

in the biological activity for present series of PTP1B 

inhibitors. This equation explains about 95% (R2 = 0.952) 

variance in the biological activity. The variables in the 

equation reveal that electronic, spatial and structural 

descriptors contribute significantly for the biological activity 

of PTP1B inhibitors. Molecular docking study supported that 

the antidiabetes compounds reported by Vats et al. (2005) 

prove their in silico inhibitory activity on human recombinant 

PTP1B enzyme that can be used in the treatment of type II 

diabetes and some other diseases. Inhibition of the active site 

residues with high activity, strong binding and low energy 

values showed that these compounds can be used in drug 

design against certain diseases that can somehow be linked to 

the protein PTP1B. 
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